The software discussed in this document is furnished under a license and may be used or copied only in accordance with the terms of the license. All warranties given by DS SolidWorks as to the software and documentation are set forth in the license agreement, and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modification or amendment of any terms, including warranties, in the license agreement.

Patent Notices

SOLIDWORKS® 3D mechanical CAD and/or Simulation software is protected by U.S. Patents 6,219,049; 6,219,055; 6,611,725; 6,844,877; 6,898,560; 6,906,712; 7,079,990; 7,477,262; 7,558,705; 7,571,079; 7,590,497; 7,643,027; 7,672,822; 7,688,318; 7,694,238; 7,853,940; 8,305,376; 8,581,902; 8,817,028; 8,910,078; 9,129,083; 9,153,072; 9,262,863; 9,465,894 and foreign patents, (e.g., EP 1,116,190 B1 and JP 3,517,643).

eDrawings® software is protected by U.S. Patent 7,184,044; U.S. Patent 7,502,027; and Canadian Patent 2,318,706.

U.S. and foreign patents pending.

Trademarks and Product Names for SOLIDWORKS Products and Services

SOLIDWORKS, 3D ContentCentral, 3D Parametrix.NET, eDrawings, and the eDrawings logo are registered trademarks and FeatureManager is a jointly owned registered trademark of DS SolidWorks.

CircuitWorks, FloXpress, PhotoView 360, and TolAnalyser are trademarks of DS SolidWorks.

FeatureWorks is a registered trademark of Geometric Ltd.

Other brand or product names are trademarks or registered trademarks of their respective holders.

COMMERCIAL COMPUTER SOFTWARE - PROPRIETARY

The Software is a “commercial item” as that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of “commercial computer software” and “commercial computer software documentation” as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government (a) for acquisition by or on behalf of civilian agencies, consistent with the policy set forth in 48 C.F.R. 12.212; or (b) for acquisition by or on behalf of units of the Department of Defense, consistent with the policies set forth in 48 C.F.R. 12.212.

In the event that you receive a request from any agency of the U.S. Government to provide Software with rights beyond those set forth above, you will notify DS SolidWorks of the scope of the request and DS SolidWorks will have five (5) business days to, in its sole discretion, accept or reject such request. Contact Manufacturer: Dassault Systemes SolidWorks Corporation, 175 Wyman Street, Waltham, Massachusetts 02451 USA.

Copyright Notices for SOLIDWORKS Standard, Premium, Professional, and Education Products

Portions of this software © 1986-2016 Siemens Product Lifecycle Management Software Inc. All rights reserved.

This work contains the following software owned by Siemens Industry Software Limited:

- **D-Cubed®** 2D DCM © 2016. Siemens Industry Software Limited. All Rights Reserved.
- **D-Cubed®** 3D DCM © 2016. Siemens Industry Software Limited. All Rights Reserved.
- **D-Cubed®** PGM © 2016. Siemens Industry Software Limited. All Rights Reserved.
- **D-Cubed®** CDM © 2016. Siemens Industry Software Limited. All Rights Reserved.
- **D-Cubed®** AEM © 2016. Siemens Industry Software Limited. All Rights Reserved.

Copyright Notices for SOLIDWORKS Simulation Products

Portions of this software © 2008 Solversoft Corporation.

PCGLSS © 1992-2016 Computational Applications and System Integration, Inc. All rights reserved.

Copyright Notices for SOLIDWORKS PDM Professional Product

Outside In® Viewer Technology, © 1992-2012 Oracle © 2011, Microsoft Corporation. All rights reserved.

Copyright Notices for eDrawings Products

Portions of this software © 2000-2014 Tech Soft 3D.

Portions of this software © 1995-1998 Jean-Loup Gailly and Mark Adler.

Portions of this software © 1998-2001 3Dconnexion.

Portions of this software © 1998-2014 Open Design Alliance. All rights reserved.

Copyright Notices for SOLIDWORKS PCB Products

Portions of this software © 2016 Altium Limited.
Contents

Introduction

About This Course .. 2
Prerequisites .. 2
Course Design Philosophy ... 2
Using this Book ... 2
Laboratory Exercises .. 2
About the Training Files .. 3
Windows® 7 ... 3
User Interface Appearance .. 3
Conventions Used in this Book 3
Use of Color ... 4
More SOLIDWORKS Training Resources 4
 Local User Groups .. 4
What is SOLIDWORKS Simulation? 5
Limitations of SOLIDWORKS Simulation Professional 6

Lesson 1:
Frequency Analysis of Parts

Objectives .. 7
Modal Analysis Basics ... 8
 Required Material Properties 10
 Frequencies and Mode Shapes 10
 Fundamental Frequency 10
Case Study: The Tuning Fork 11
Lesson 3: Buckling Analysis

Objectives ... 47
Buckling Analysis .. 48
 Linear vs. Nonlinear Buckling Analysis 48
 Buckling Factor of Safety (BFS) 49
 Buckling Analysis Considerations 49
Case Study: Particle Separator 50
Project Description .. 50
 Stages in the Process .. 50
 Conclusion ... 52
 Calculating Buckling Loads 52
 Results Discussion ... 53
 Will the structure Buckle or Yield First? 54
Summary ... 54
Questions ... 54
Exercise 5: Buckling Analysis of a Stool 55
Exercise 6: Cabinet ... 61

Lesson 4: Load Cases

Objectives ... 67
Load Cases ... 68
Case Study: Scaffolding .. 68
 Project Description ... 68
 Stages in the Process .. 69
 Initial Load Case ... 76
Summary ... 79

Lesson 5: Submodeling

Objectives ... 81
Submodeling ... 82
 Parent Study ... 82
Case Study: Scaffolding .. 83
 Project Description ... 83
 Stages in the Process .. 84
Part 1: Parent Study .. 84
 Parent Load Cases in Submodeling Study 85
Part 2: Child Study .. 86
 Selecting Components for Submodeling 87
 Submodel Fixtures ... 88
Summary ... 91
Questions ... 91
Lesson 8: Advanced Thermal Stress 2D Simplification

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>135</td>
</tr>
<tr>
<td>Thermal Stress Analysis</td>
<td>136</td>
</tr>
<tr>
<td>Case Study: Metal Expansion Joint</td>
<td>136</td>
</tr>
<tr>
<td>Project Description</td>
<td>136</td>
</tr>
<tr>
<td>Stages in the Process</td>
<td>137</td>
</tr>
<tr>
<td>Thermal Analysis</td>
<td>137</td>
</tr>
<tr>
<td>2D Simplification</td>
<td>137</td>
</tr>
<tr>
<td>Prescribed Temperature Condition</td>
<td>142</td>
</tr>
<tr>
<td>Meshing Considerations in Thermal Analysis</td>
<td>142</td>
</tr>
<tr>
<td>Thermal Stress Analysis</td>
<td>145</td>
</tr>
<tr>
<td>Importing Temperatures and Pressures from SOLIDWORKS Flow Simulation</td>
<td>146</td>
</tr>
<tr>
<td>Reference Temperature at Zero Strains</td>
<td>146</td>
</tr>
<tr>
<td>Summary</td>
<td>151</td>
</tr>
<tr>
<td>Questions</td>
<td>153</td>
</tr>
<tr>
<td>Exercise 8: Thermal Stress Analysis of a Microchip Testing Assembly</td>
<td>155</td>
</tr>
<tr>
<td>Thermal Stress Study</td>
<td>158</td>
</tr>
<tr>
<td>Change in Thermal Boundary Conditions</td>
<td>159</td>
</tr>
<tr>
<td>Summary</td>
<td>161</td>
</tr>
<tr>
<td>Exercise 9: Thermal Stress Analysis of a Gas Tank</td>
<td>162</td>
</tr>
<tr>
<td>Exercise 10: Thermal Stress Analysis of a Thermoelectric Cooler</td>
<td>167</td>
</tr>
<tr>
<td>Problem Description</td>
<td>167</td>
</tr>
<tr>
<td>Materials</td>
<td>168</td>
</tr>
<tr>
<td>Loading Conditions</td>
<td>169</td>
</tr>
<tr>
<td>Goal</td>
<td>169</td>
</tr>
</tbody>
</table>
Lesson 9: Fatigue Analysis

Objective ... 171
Fatigue ... 172
 Stages of Failure due to Fatigue 172
 High vs. Low Cycle Fatigue 173
Stress-life (S-N) Based Fatigue 173
 Fatigue Loading ... 173
Case Study: Pressure Vessel 175
 Project Description 175
 Stages in the Process 175
Thermal Study .. 177
Thermal Stress Study ... 177
 Static Pressure Study 179
Fatigue Terminology ... 181
 S-N Curve .. 181
Fatigue Study ... 184
 Derive from Material Elastic Modulus 187
 Constant Amplitude Events Interaction 187
 Alternating Stress Computation 187
 Mean Stress Correction 188
 Fatigue Strength Reduction Factor 190
 Damage Factor Plot 190
 Damage Result Discussion 192
Fatigue Study with Dead Load 193
 Dead Loads in Fatigue Analysis 193
 Bolts in Fatigue Analysis 194
 Find Cycle Peaks .. 195
Summary .. 197
Questions .. 197
Exercise 11: Fatigue Analysis of a Basketball Rim 198
Exercise 12: Fatigue of Trailer Hitch 204
Lesson 10:
Variable Amplitude Fatigue

Objectives ... 207
Case Study: Suspension .. 208
Project Description .. 208
 Stages in the Process .. 209
 Discussion ... 210
Fatigue Study .. 211
 Variable Amplitude Fatigue Event 211
 Rainflow Cycle Counting Method 211
 Variable Loading Curve ... 212
 Bins for Rainflow Counting 217
 Noise in Random Loading History 217
 Fatigue Strength Reduction Factor 217
 Rainflow Matrix Chart ... 220
 Results ... 220
 Fatigue Literature .. 221
Summary ... 222
Questions ... 222

Lesson 11:
Drop Test Analysis

Objectives ... 223
Drop Test Analysis .. 224
Case Study: Camera ... 224
Project Description ... 224
 Stages in the Process ... 224
Rigid Floor Drop Test .. 225
 Drop Test Parameters ... 226
 Dynamic Analysis ... 227
 Damping ... 228
 Solution Time .. 229
 Graphing Results .. 230
 Linear vs. Nonlinear Solution 232
Elastic Floor, Elasto-Plastic Material 234
Elasto-Plastic Material Model 236
 Elasto-Plastic Model Parameters 237
 Processing Elasto-Plastic Results 238
 Discussion ... 239
Drop Test with Contact (optional) 239
Summary ... 241
Exercise 13: Drop Test of a Clip 242
Lesson 12: Optimization Analysis

Objectives ... 245
Optimization Analysis .. 246
Case Study: Press Frame ... 246
Project Description .. 246
 Design Requirements .. 247
 Stages in the Process ... 247
Static and Frequency Analyses 247
Optimization Analysis ... 249
Design Study .. 249
 Optimization Goal .. 250
 Design Variable Summary 252
 Define Constraints .. 252
 Constraint Tolerance .. 255
 Constraint Definition Procedure 255
 Postprocessing Optimization Results 256
Local Trend Graphs .. 260
Summary ... 260
Exercise 14: Optimization Analysis of a Cantilever Bracket . . . 261
Exercise 15: Optimization of Heat Sink 264

Lesson 13: Pressure Vessel Analysis

Objectives ... 265
Case Study: Pressure Vessel ... 266
Project Description .. 266
 Stages in the Process .. 266
 Stress Intensity .. 268
 Membrane and Bending Stresses (stress linearization) 268
 Basic Stress Intensity Limits 268
Pressure Vessel Analysis .. 268
 Load Case Combinations .. 270
 General Primary Membrane Stress Intensity 271
 Manhole Nozzle Flange and Cover 272
 Stress Linearization ... 273
Summary ... 276